HygroSkin – Meteorosensitive Pavilion
Permanent Collection, FRAC Centre Orleans, France, 2011-13
Achim Menges in collaboration with Oliver David Krieg and Steffen Reichert
“It is a question of surrendering to the wood, then following where it leads by connecting operations to a materiality, instead of imposing a form upon a matter” (Gilles Deleuze and Félix Guattari)
The project HygroSkin – Meteorosensitive Pavilion explores a novel mode of climate-responsive architecture. While most attempts towards environmental responsiveness heavily rely on elaborate technical equipment superimposed on otherwise inert material constructs, this project uses the responsive capacity of the material itself. The dimensional instability of wood in relation to moisture content is employed to construct a metereosensitive architectural skin that autonomously opens and closes in response to weather changes but neither requires the supply of operational energy nor any kind of mechanical or electronic control. Here, the material structure itself is the machine.
(c) ICD University of Stuttgart
(c) ICD University of Stuttgart
(c) ICD University of Stuttgart
(c) ICD University of Stuttgart
The travelling pavilion’s modular wooden skin is designed and produced utilizing the self-forming capacity of initially planar plywood sheets to form conical surfaces based on the material’s elastic behavior. Within the deep, concave surface of each robotically fabricated module a weather-responsive aperture is placed. Materially programming the humidity-responisve behaviour of these apertures opens up the possibility for a strikingly simple yet truly ecologically embedded architecture in constant feedback and interaction with its surrounding environment. The responsive wood-composite skin adjusts the porosity of the pavilion in direct response to changes in ambient relative humidity. These climatic changes – which form part of our everyday live but usually escape our conscious perception – trigger the silent, material-innate movement of the wooden skin. This subtle yet constant modulation of the relationship between the pavilion’s exterior and interior provides for a unique convergence of environmental and spatial experiences.
(c) ICD University of Stuttgart
(c) ICD University of Stuttgart
(c) ICD University of Stuttgart
(c) ICD University of Stuttgart
The project was commissioned by the FRAC Centre Orleans for its renowned permanent collection and will be first shown in the exhibition ArchiLab 2013 – Naturalizing Architecture opening on 14th of September 2013.
Institute for Computational Design, University of Stuttgart
Prof. Achim Menges, Oliver David Krieg, Steffen Reichert, Nicola Burggraf, Zachary Christian, David Correa, Katja Rinderspacher, Tobias Schwinn with Yordan Domuzov, Tobias Finkh, Gergana Hadzhimladenova, Michael Herrick, Vanessa Mayer, Henning Otte, Ivaylo Perianov, Sara Petrova, Philipp Siedler, Xenia Tiefensee, Sascha Vallon, Leyla Yunis
(Scientific Development, Detail Development, Robotic Fabrication, Assembly)
Project Funding
FRAC Fonds Régional d’Art Contemporain du Centre
Robert Bosch Stiftung
Kiess GmbH
Cirp GmbH
Holzhandlung Wider GmbH
HygroSkin – Meteorosensitive Pavilion
HygroSkin – Meteorosensitive Pavilion
Permanent Collection, FRAC Centre Orleans, France, 2011-13
Achim Menges in collaboration with Oliver David Krieg and Steffen Reichert
“It is a question of surrendering to the wood, then following where it leads by connecting operations to a materiality, instead of imposing a form upon a matter” (Gilles Deleuze and Félix Guattari)
The project HygroSkin – Meteorosensitive Pavilion explores a novel mode of climate-responsive architecture. While most attempts towards environmental responsiveness heavily rely on elaborate technical equipment superimposed on otherwise inert material constructs, this project uses the responsive capacity of the material itself. The dimensional instability of wood in relation to moisture content is employed to construct a metereosensitive architectural skin that autonomously opens and closes in response to weather changes but neither requires the supply of operational energy nor any kind of mechanical or electronic control. Here, the material structure itself is the machine.
(c) ICD University of Stuttgart
(c) ICD University of Stuttgart
(c) ICD University of Stuttgart
(c) ICD University of Stuttgart
The travelling pavilion’s modular wooden skin is designed and produced utilizing the self-forming capacity of initially planar plywood sheets to form conical surfaces based on the material’s elastic behavior. Within the deep, concave surface of each robotically fabricated module a weather-responsive aperture is placed. Materially programming the humidity-responisve behaviour of these apertures opens up the possibility for a strikingly simple yet truly ecologically embedded architecture in constant feedback and interaction with its surrounding environment. The responsive wood-composite skin adjusts the porosity of the pavilion in direct response to changes in ambient relative humidity. These climatic changes – which form part of our everyday live but usually escape our conscious perception – trigger the silent, material-innate movement of the wooden skin. This subtle yet constant modulation of the relationship between the pavilion’s exterior and interior provides for a unique convergence of environmental and spatial experiences.
(c) ICD University of Stuttgart
(c) ICD University of Stuttgart
(c) ICD University of Stuttgart
(c) ICD University of Stuttgart
The project was commissioned by the FRAC Centre Orleans for its renowned permanent collection and will be first shown in the exhibition ArchiLab 2013 – Naturalizing Architecture opening on 14th of September 2013.
For more information visit Institute for Computational Design
Project Team
Achim Menges Architect, Frankfurt
Achim Menges, Steffen Reichert, Boyan Mihaylov
(Project Development, Design Development)
Institute for Computational Design, University of Stuttgart
Prof. Achim Menges, Oliver David Krieg, Steffen Reichert, Nicola Burggraf, Zachary Christian, David Correa, Katja Rinderspacher, Tobias Schwinn with Yordan Domuzov, Tobias Finkh, Gergana Hadzhimladenova, Michael Herrick, Vanessa Mayer, Henning Otte, Ivaylo Perianov, Sara Petrova, Philipp Siedler, Xenia Tiefensee, Sascha Vallon, Leyla Yunis
(Scientific Development, Detail Development, Robotic Fabrication, Assembly)
Project Funding
FRAC Fonds Régional d’Art Contemporain du Centre
Robert Bosch Stiftung
Kiess GmbH
Cirp GmbH
Holzhandlung Wider GmbH
(c) ICD University of Stuttgart
(c) ICD University of Stuttgart
(c) ICD University of Stuttgart
(c) ICD University of Stuttgart
(c) ICD University of Stuttgart